综合智慧能源 ›› 2024, Vol. 46 ›› Issue (6): 35-43.doi: 10.3969/j.issn.2097-0706.2024.06.005

• 新能源优化控制 • 上一篇    下一篇

基于DDPG算法的离网型可再生能源大规模制氢系统优化调度

郑庆明1(), 井延伟1, 梁涛2,*(), 柴露露2, 吕梁年3   

  1. 1.河北建投新能源有限公司,石家庄 050011
    2.河北工业大学 人工智能与数据科学学院,天津 300401
    3.金风科技股份有限公司,北京 102600
  • 收稿日期:2023-12-18 修回日期:2024-04-03 出版日期:2024-06-25
  • 通讯作者: *梁涛(1975),男,教授,博士生导师,从事新能源系统检测与大数据技术研究,54008214@qq.com
  • 作者简介:郑庆明(1975),男,高级工程师,从事新能源大数据研究,zhengqingming@suntien.com
  • 基金资助:
    河北省科技支撑计划项目(F2021202022);国家重点研发计划项目(2023YFB3407703)

Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm

ZHENG Qingming1(), JING Yanwei1, LIANG Tao2,*(), CHAI Lulu2, LYU Liangnian3   

  1. 1. Hebei Jiantou New Energy Company Limited, Shijiazhuang 050011, China
    2. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
    3. Goldwind Science & Technology Company Limited,Beijing 102600, China
  • Received:2023-12-18 Revised:2024-04-03 Published:2024-06-25
  • Supported by:
    Science and Technology Plan Project of Hebei Province of China(F2021202022);National Key R&D Program(2023YFB3407703)

摘要:

为提高可再生能源消纳能力,减少整流和并网等设备的投资成本,降低电解水制氢系统成本,实现可再生能源大规模制氢,构建了一个孤岛型可再生能源大规模制氢系统。该系统通过智慧能量管理,实现了提高系统经济性与安全性的目标。首先建立可再生能源大规模制氢系统的仿真模型,制定控制策略;其次,提出一种基于深度确定性策略梯度(DDPG)的能量优化调度策略。通过大量长期的训练,使用DDPG算法得到的智能体能够实现智能化的动态能量优化调度。将该策略与深度Q网络、粒子群优化和传统控制方法在经济性和安全性方面进行比较,结果表明DDPG算法在能量优化管理中可实现更高的经济收益,更好地利用可再生资源,并确保系统的安全运行。

关键词: 可再生能源, 大规模制氢, 离网型, 深度确定性策略梯度, 优化调度

Abstract:

To improve the renewable energy consumption, reduce the investment on rectifiers and grid connection equipment, cut down the cost of water electrolysis for hydrogen production through powering hydrogen production by renewable energy, an islanded renewable energy large-scale hydrogen production system is constructed. An intelligent energy management platform can improve the economy and safety of the system. Firstly, a simulation model of the renewable energy large-scale hydrogen production system is established and its control strategy is formulated. Secondly, an energy optimization scheduling strategy based on deep deterministic policy gradient (DDPG) algorithm is proposed. Through long-term trainings, the agent obtained from the DDPG algorithm can achieve intelligent dynamic optimized scheduling on energy. Comparing the performances of the proposed strategy with deep Q network (DQN), Particle Swarm Optimization (PSO) and traditional control methods in terms of economy and safety, it is shown that applying the DDPG algorithm in energy optimization and management can get higher economic returns and utilization rates of renewable resources, and ensure the safe operation of the system.

Key words: renewable energy, large-scale hydrogen production, off-grid, deep deterministic policy gradient, optimized scheduling

中图分类号: